The Cost of Wind Energy, Part I

May 14, 2013 by  
Filed under Green Energy News

I have said on numerous occasions that the inspiration for “Nuclear Green” came from David Roberts on Grist. Roberts maintained that the cost of nuclear energy was significantly higher than the cost of renewable energy. I decided to test Roberts’ claim by investigating the cost of wind energy. I wanted to find a means of estimating the cost of a one million mega watt (Mgw) wind generator and compare that to the cost of one million Mgw of nuclear generation capacity. In fact, units of one billion watts are probably easier to calculate and determine than the one million unit, but the one million watt unit can be determined by dividing the one billion watt unit by one thousand.

I found it difficult to locate sources that would give me any idea of the future cost of wind generating facilities, but I did find press releases that dealt with newly announced projects; thus I could base my cost estimates on wind projects that were launched in 2008. I found press releases about new wind projects included information on the nameplate electrical output of the project and the cost of constructing the wind generators and the auxiliary facility equipment. These costs ran from $2,250.00 to $2,500.00 per one million Mgw nameplate capacity. Nameplate capacity refers to the maximum possible electrical output that could come from a single wind generator.

As I was discover, nameplate capacity was a somewhat deceptive measure of a wind units electrical output. ┬áNo wind generator produced one hundred percent of its’ nameplate rated capacity over a one year period of time. A nuclear power plant produces about ninety percent of its’ nameplate rated capacity over a year’s period of time. Wind generators more typically produce thirty percent or less of their nameplate capacity.

Wind generation output varies according to the time of the day and the seasons of the year. Thus, for example, wind generation during August in Tennessee will typically produce less than ten percent of rated capacity. Coastal breezes may be stronger during the day time, thus wind will generate more electricity during the day in coastal areas. Inland breezes may be stronger at night and thus more wind generated electricity is produced at night.  Summer breezes generate less electricity while at the same time summer demand for electricity increases. This makes inland wind a poor match to summer electrical demands. Winds may drop during cold snaps when heating related demands for electricity increase. Thus installing wind generators that include the same nameplate generating capacity as nuclear power plants does not mean that the equivalent amount of electricity will be available from the wind generators when customers want it.

Wind generated electricity is in many instances poorly matched to consumer demands for electricity and these consumer demands may be inflexible. For example, the summer demand for air conditioning in Texas and in many other parts of the United States is inflexible. The demand for air conditioning is not simply a luxury, but a matter of public health. The same is true of winter heating. Thus, the electrical industry must deliver electrical energy to consumers when they need it. To fail to do so, would in many cases lead to problems in public health.

My studies of the cost of new wind power led me to conclude that the cost would be subject to considerable inflation. I noted that the cost of new wind generating capacity in 2008 was over twice its cost a decade ago. In 2009 there were further rises in the estimated cost of new wind construction. The most significant source of this dramatic inflation appeared to have been wind subsidies. The cost of new wind generating facilities was the lowest when there were no wind subsidies from the government. When subsidies kicked in, inflation of the cost for new wind generation facilities also kicked in. This appeared to contradict the argument for subsidies which stated the price of new wind generation facilities will drop as more facilities are built. Subsidies encourage the building of more new facilities. Advocates argue that increasing the number of facilities decreases the cost of further new facilities. Thus the subsidies of new facilities are justified as a means of decreasing the cost of new wind generation facilities. Powerful arguments emerged during the last decade that subsidies did not lead to lower wind facility cost. Quite the contrary, subsidies lead to increased costs.

When I reviewed plans for post carbon renewable energy without nuclear resources, I found that the estimated price of wind generation facilities ten and twenty years into the future were not much higher or even lower than current wind generation costs. At the very least the evidence for inflation was such that planners needed to take it into account in offering possible future scenarios. Yet future renewable energy plans consistently ignored the possibility of inflation in the price of new wind generators. Furthermore, this problem seems to have escaped the entire pro-renewable community. David Roberts, for example, expressed concern for inflation in the cost of nuclear power plants without recognizing that inflation could also take place in the cost of wind generators, but the evidence was not hard to come by. We have to wonder if people like Roberts simply don’t think the questions through or whether they are aware of the problems, but for unknown reasons, avoid mentioning them.

Were this the whole story and wind generators produced equivalent amounts of energy to those produced by nuclear power plants, wind would still hold a significant advantage. This is not the case, however. In my next post, I will consider the crippling disadvantages of wind and how wind can never successfully compete with nuclear power.

Comments are closed.